k-quasi-convexity reduces to quasi-convexity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-convexity, strictly quasi-convexity and pseudo-convexity of composite objective functions

L’accès aux archives de la revue « Revue française d’automatique informatique recherche opérationnelle. Mathématique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyr...

متن کامل

Quasi-convexity and Shrinkwrapping

We extend a result of Minsky to show that for a map of a surface to a hyperbolic 3-manifold which is not necessarily π1-injective but is 2-incompressible rel a geodesic link with a definite tube radius, the set of noncontractible simple loops with a bounded length representatives is quasi-convex in the complex of curves.

متن کامل

Beyond Convexity: Stochastic Quasi-Convex Optimization

Stochastic convex optimization is a basic and well studied primitive in machine learning. It is well known that convex and Lipschitz functions can be minimized efficiently using Stochastic Gradient Descent (SGD). The Normalized Gradient Descent (NGD) algorithm, is an adaptation of Gradient Descent, which updates according to the direction of the gradients, rather than the gradients themselves. ...

متن کامل

An algorithm for detecting Directional Quasi–Convexity

Directional Quasi–Convexity (DQC) is a sufficient condition for Nekhoroshev stability, that is, stability for finite but very long times, of elliptic equilibria of Hamiltonian systems. The numerical detection of DQC is elementary for system with three degrees of freedom. In this article, we propose a recursive algorithm to test DQC in any number n ≥ 4 of degrees of freedom.

متن کامل

Convexity of quasi-entropy type functions: Lieb’s and Ando’s convexity theorems revisited

Given a positive function f on (0,∞) and a non-zero real parameter θ, we consider a function Iθ f (A,B,X) = TrX (f(LAR −1 B )RB) −θ(X) in three matrices A,B > 0 and X. This generalizes the notion of monotone metrics on positive definite matrices, and in the literature θ = ±1 has been typical. We investigate how operator monotony of f is sufficient and/or necessary for joint convexity/concavity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics

سال: 2011

ISSN: 0308-2105,1473-7124

DOI: 10.1017/s0308210510000867